Search results for "Artificial atom"
showing 3 items of 3 documents
Vertical quantum dots with elliptically deformed cross sections
1999
Abstract Few-electron vertical quantum dot artificial atoms with circular and elliptically deformed cross sections are investigated. Because of the high symmetry of the lateral confining potential, circular dots show a pronounced shell structure. With the lifting of level degeneracies, even a small deformation in shape is found to radically alter the shell structure leading to significant modifications of the addition energy spectra, and to induce change in the total spin.
Spin and rotational symmetries in unrestricted Hartree–Fock states of quantum dots
2007
Ground state energies are obtained using the unrestricted Hartree Fock method for up to four interacting electrons parabolically confined in a quantum dot subject to a magnetic field. Restoring spin and rotational symmetries we recover Hund first rule. With increasing magnetic field, crossovers between ground states with different quantum numbers are found for fixed electron number that are not reproduced by the unrestricted Hartree Fock approximation. These are consistent with the ones obtained with more refined techniques. We confirm the presence of a spin blockade due to a spin mismatch in the ground states of three and four electrons.
Spin projected unrestricted Hartree-Fock ground states for harmonic quantum dots
2008
We report results for the ground state energies and wave functions obtained by projecting spatially unrestricted Hartree Fock states to eigenstates of the total spin and the angular momentum for harmonic quantum dots with $N\leq 12$ interacting electrons including a magnetic field states with the correct spatial and spin symmetries have lower energies than those obtained by the unrestricted method. The chemical potential as a function of a perpendicular magnetic field is obtained. Signature of an intrinsic spin blockade effect is found.